Two putative BIN2 substrates are nuclear components of brassinosteroid signaling.

نویسندگان

  • Jun Zhao
  • Peng Peng
  • Robert J Schmitz
  • Adria D Decker
  • Frans E Tax
  • Jianming Li
چکیده

GSK3 is a highly conserved kinase that negatively regulates many cellular processes by phosphorylating a variety of protein substrates. BIN2 is a GSK3-like kinase in Arabidopsis that functions as a negative regulator of brassinosteroid (BR) signaling. It was proposed that BR signals, perceived by a membrane BR receptor complex that contains the leucine (Leu)-rich repeat receptor-like kinase BRI1, inactivate BIN2 to relieve its inhibitory effect on unknown downstream BR-signaling components. Using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we discovered a potential BIN2 substrate that is identical to a recently identified BR-signaling protein, BES1. BES1 and its closest homolog, BZR1, which was also uncovered as a potential BR-signaling protein, display specific interactions with BIN2 in yeast. Both BES1 and BZR1 contain many copies of a conserved GSK3 phosphorylation site and can be phosphorylated by BIN2 in vitro via a novel GSK3 phosphorylation mechanism that is independent of a priming phosphorylation or a scaffold protein. Five independent bes1 alleles containing the same proline-233-Leu mutation were identified as semidominant suppressors of two different bri1 mutations. Over-expression of the wild-type BZR1 gene partially complemented bin2/+ mutants and resulted in a BRI1 overexpression phenotype in a BIN2(+) background, whereas overexpression of a mutated BZR1 gene containing the corresponding proline-234-Leu mutation rescued a weak bri1 mutation and led to a bes1-like phenotype. Confocal microscopic analysis indicated that both BES1 and BZR1 proteins were mainly localized in the nucleus. We propose that BES1/BZR1 are two nuclear components of BR signaling that are negatively regulated by BIN2 through a phosphorylation-initiated process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling.

Phytohormone brassinosteroids (BRs) play critical roles in plant growth and development. BR acts by modulating the phosphorylation status of two key transcriptional factors, BRI1 EMS SUPPRESSOR1 and BRASSINAZOLE RESISTANT1 (BZR1), through the action of BRASSINOSTEROID INSENSITIVE1/BRI1 ASSOCIATED RECEPTOR KINASE1 receptors and a GSK3 kinase, BRASSINOSTEROID INSENSITIVE2 (BIN2). It is still unkn...

متن کامل

The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis.

Brassinosteroids (BRs) are a class of steroid hormones essential for normal growth and development in plants. BR signaling involves the cell-surface receptor BRI1, the glycogen synthase kinase-3-like kinase BIN2 as a negative regulator, and nuclear proteins BZR1 and BZR2/BES1 as positive regulators. The interactions among these components remain unclear. Here we report that BRs induce dephospho...

متن کامل

BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling.

GLYCOGEN SYNTHASE KINASE3 (GSK3) is a highly conserved serine/threonine kinase involved in a variety of developmental signaling processes. The Arabidopsis (Arabidopsis thaliana) genome encodes 10 GSK3-like kinases that are clustered into four groups. Forward genetic screens have so far uncovered eight mutants, all of which carry gain-of-function mutations in BRASSINOSTEROID-INSENSITIVE2 (BIN2),...

متن کامل

Brassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases

In Arabidopsis, root hair and non-hair cell fates are determined by a MYB-bHLH-WD40 transcription factor complex and are regulated by many internal and environmental cues. Brassinosteroids play important roles in regulating root hair specification by unknown mechanisms. Here, we systematically examined root hair phenotypes in brassinosteroid-related mutants, and found that brassinosteroid signa...

متن کامل

BRASSINOSTEROID INSENSITIVE2 Interacts with ABSCISIC ACID INSENSITIVE5 to Mediate the Antagonism of Brassinosteroids to Abscisic Acid during Seed Germination in ArabidopsisW

Seed germination and postgerminative growth are regulated by a delicate hormonal balance. Abscisic acid (ABA) represses Arabidopsis thaliana seed germination and postgerminative growth, while brassinosteroids (BRs) antagonize ABA-mediated inhibition and promote these processes. However, the molecular mechanism underlying BR-repressed ABA signaling remains largely unknown. Here, we show that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 130 3  شماره 

صفحات  -

تاریخ انتشار 2002